Что такое фрактальная графика: Фрактальная графика — это… Что такое Фрактальная графика?
- примеры, форматы, плюсы и минусы
- Лекция по теме «Фрактальная графика»
- Фрактальная графика. :: Электроника для всех
- Фракталы | Журнал Популярная Механика
- Фрактальная графика Википедия
- Что такое фрактал? Фракталы в природе
- Порядок в хаосе
- Немного сухих фактов
- Историческая справка, или Как все начиналось
- Динамические, или алгебраические фракталы
- Человек с пространственным воображением
- Жюлиа – Мандельброт
- Л. Карпентер: искусство, созданное природой
- Решение Карпентера
- Первая 3D-визуализация на фрактальном алгоритме
- Том Беддард
- Фракталы в природе
- Музыкальная пауза
- Индикатор-фрактал
- В заключение
- Фрактал — это… Что такое Фрактал?
- описание, примеры, форматы, достоинства и недостатки
- Simple English Wikipedia, бесплатная энциклопедия
примеры, форматы, плюсы и минусы
Математика буквально пронизана гармонией, и графика фрактальная – прямое тому подтверждение. Наука присутствует при создании каждого ее элемента, поэтому она отражает всю красоту.
Создатель фрактальной геометрии, профессор Мальдерброт, писал в своих книгах, что рассматриваемая графика представляет собой не просто повторяющиеся изображения. Это – структура любого существа или объекта на планете, живого и неживого. К примеру, ДНК является основой, одной интеграцией. Но если код начинает повторяться, тогда появляется человек.
Основы фрактальной графики
Что такое фрактальная графика? Это одна или несколько геометрических фигур, каждая из которых подобна другой. То есть, изображение составляется из одинаковых частей.
Само слово «фрактал» может употребляться, если фигура обладает одним или несколькими из этих свойств:
- Нетривиальная структура. Когда рассматривается небольшая деталь всего изображения, то фрагмент схож со всем рисунком. Увеличение масштаба не приводит к ухудшению. Изображение всегда остается одинаково сложным.
- Каждая часть рисунка является самоподобной.
- Имеется математическая размерность.
- Строится при помощи повторения.
Множество объектов природного или искусственного происхождения наделяются свойствами фракталов. К ним относятся кровеносные системы человека и животного, кроны и корни деревьев и так далее.
Фрактальная компьютерная графика становится популярной потому, что добиться красоты и реалистичности можно посредством простого построения при помощи соответствующего оборудования. Нужно только задать правильную математическую формулу и указать количество повторений.
Как создать элемент фрактальной графики?
Создание фрактальной графики будет различаться в зависимости от ее классификации: геометрическая, алгебраическая или стохастическая. Несмотря на разницу, итог всегда будет одинаковым. Поскольку фрактальная графика начинается с геометрии, то следует рассмотреть ее создание на соответствующем примере:
- Задают условие. Это фигура, на основе которой будет строиться все изображение.
- Задают процедуру. Она преобразует условие.
- Получают геометрический фрактал.
Обычно нулевое условие представляется в виде треугольника.
Чтобы построить изображение, нужно применить две процедуры. Во-первых, DrawTriangle. Она строит треугольник по точкам, заданным пользователем. Во-вторых, DrawGenerator. Она указывает количество точек. Каждая процедура может повторяться несколько раз или бесконечно долго. Для определения этого показателя применяется численный аргумент n.
Другие действия с фрактальной графикой
После того как элемент фрактальной графики был создан, с ним можно производить различные дополнительные действия:
- Повороты и растяжения. Так увеличиваются отдельные детали рисунка, либо они принимают нужную пользователю форму.
- Группирование объектов. Обычно эта функция применяется для того, чтобы назначить требуемый масштаб.
- Преобразование цветов. Изображение можно окрасить в любой оттенок, задать тон.
- Изменение формы всего объекта или отдельных деталей.
Нужно помнить, что изображения фрактальной графики в конечном итоге предсказать невозможно. Когда треугольник слишком увеличивается, то просмотр будет нереальным, пользователь увидит только черное окно. Когда желаемая текстура обнаружена, все изменения с ней нужно проводить в минимальном порядке, постоянно сохраняя допустимый вариант.
Программы для генерации
Нет такого человека, которого бы не привлекала фрактальная графика. Программы, участвующие в ее создании, представлены в большом количестве. Поэтому надо разобраться в наиболее подходящих для новичков.
Продукт Art Dabbler представляет собой лучший вариант, если пользователь раньше не имел дело с его налогами. Здесь можно не только освоить графику, но и научиться рисовать на компьютере. К другим преимуществам следует отнести небольшое количество занимаемой памяти и интуитивно понятный интерфейс.
Другая программа – Ultra Fractal. Она уже ориентирована на работу профессионалов, новичкам сложно будет в ней разобраться. Интерфейс здесь достаточно сложный, но производители выполнили его на примере обычного Photoshop. Если пользователь имел дело с этой программой, то в кнопках разберется быстро. Особенность Ultra Fractal заключается в том, что здесь выполняется не только графика фрактальная в качестве стандартного и обычного изображения, но и анимация. Формулы для составления прилагаются, но при необходимости пользователь сможет задействовать свою.
Существующие форматы
Форматы фрактальной графики определяют форму и способ хранения файловых данных. Некоторые из них включают в себя большой объем информации. Поэтому их необходимо сжимать. Причем делать это не посредством архивирования, а непосредственно в файле. Если правильно его выбрать, то сжатие будет происходить автоматически. Есть несколько алгоритмов этой процедуры.
Если перед пользователем аппликация, большая часть которой выдержана в одном цвете, то разумно использовать форматы BMP и PCX. Здесь заменяется последовательность повторяющихся величин.
Диаграмму, которая очень редко, но все-таки используется во фрактальной графике, логично поместить в TIFF или GIF.
Часть форматов является универсальной. То есть, их можно просмотреть в большинстве редакторов. Но если пользователю важна качественная обработка изображений, тогда нужно применять оригинальную программу.
Форматы фракталы не поддерживаются браузерами. Именно поэтому осуществляется их преображение, если есть необходимость загрузить на тот или иной сайт.
Сферы применения
Применение фрактальной графики можно назвать фактически повсеместным. Более того, эта область постоянно расширяется. На данный момент можно отметить следующие области:
- Компьютерная графика. Реалистично изображаются рельефы и природные объекты. Это применяется в создании компьютерных игр.
- Анализ фондовых рынков. Фракталы здесь используются для того, чтобы отметить повторения, которые впоследствии сыграют трейдерам на руку.
- Естественные науки. В физике с помощью фрактальной графики моделируются нелинейные процессы. В биологии она описывает строение кровеносной системы.
- Сжатие изображений, чтобы уменьшить объем информации.
- Создание децентрализованной сети. Посредством фракталов удается обеспечить прямое подключение, а не через центральное регулирование. Поэтому сеть становится более устойчивой.
На данный момент практикуется применение фракталов в производстве различного оборудования. Например, уже запущен конвейер по созданию антенн, отлично принимающих сигналы.
Примеры
Примеры фрактальной графики распространены от примитивных до очень сложных повторяющихся элементов. Уникальной особенностью данного типа является то, что рисунок можно составить исключительно из восклицательных или вопросительных знаков.
Стандартными, но относительно сложными примерами компьютерной фрактальной графики являются облака, горы, морские побережья и так далее. Их зачастую используют при создании игр.
Самым простым примером можно назвать кривую Коха. Во-первых, она не имеет конкретной длины, и ее называют бесконечной. Во-вторых, здесь полностью отсутствует гладкость. Поэтому невозможно построить касательную.
Плюсы и минусы
Свое распространение совсем недавно заполучила фрактальная графика. Достоинства и недостатки ее слишком размыты, поскольку отсутствует нормальная теоретическая база. Терминология и принципы ее использования до конца не изучены, несмотря на то, что они действенные и рабочие.
Достоинства фрактальной графики заключаются в нескольких факторах:
- Небольшой размер при масштабном рисунке.
- Нет конца масштабированию, сложность картинки можно увеличивать бесконечно.
- Нет другого такого же инструмента, который позволит создавать сложные фигуры.
- Реалистичность.
- Простота в создании работ.
Недостатки фрактальной графики тоже присутствуют. Во-первых, без компьютера здесь не обойтись. Причем, чем длиннее количество повторений, тем больше загружается процессор. Соответственно, только качественное компьютерное оборудование способно справиться с построением сложных изображений.
Во-вторых, присутствуют ограничения в исходных математических фигурах. Некоторые изображения создать посредством фракталов не удастся.
Сходства и различия между фракталом и вектором
Векторная и фрактальная графика очень различаются между собой:
- По кодированию изображений. Вектор задействует контуры разных геометрических фигур, фрактал – математическую формулу, в основе которой лежит треугольник.
- По применению. Вектор используют везде, где нужно получить четкий контур. Фрактальная графика более специализирована, она нашла свое применение в математике и искусстве.
- По аналогам. Векторными аналогами являются слайды или функции на графиках. У фракталов это – снежинки или кристаллы.
Несмотря на многообразие отличительных черт, эти два вида графики объединяет качество изображения. Оно остается неизменным, независимо от уровня масштабирования.
Трехмерная, векторная, растровая, фрактальная графика схожи в одном – все они широко используются в решении различных компьютерных задач. Чтобы получить действительно качественное изображение, нужно задействовать каждую из них.
Уникальные особенности фракталов
Графика фрактальная не имеет аналогов. Она уникальна в своем роде. Во-первых, один ее небольшой участок может рассказать сразу обо всем рисунке или изображении. Информация обо всем фрактале доступна, т.к. он является самоподобным.
В центре любого изображения, относящегося к данному типу графики, располагается равносторонний треугольник. Все остальные детали рисунка являются либо его частями, либо уменьшенными/увеличенными копиями. То есть, в составлении изображения принимает участие один конкретный элемент.
Для того чтобы использовать фрактальную графику, не нужны никакие объекты, хранящиеся в памяти компьютера. Приступить к созданию можно, имея под рукой одну только математическую формулу.
Заключение
Графика фрактальная очень реалистична. Происходит это потому, что ее детали и элементы постоянно встречаются в окружении человека – горы, облака, морские берега, различные природные явления. Часть из них остается постоянно в одном и том же состоянии, вроде деревьев, каменистых участков. Остальные же непрерывно меняются, как мерцающее огненное пламя или кровь, двигающаяся по сосудам.
Развитие фрактальных технологий на сегодняшний день – одна из прогрессирующих областей науки. Она используется не только в компьютерной графике. Возможно, если ученым удастся докопаться до их сути, человек начнет намного лучше понимать этот мир.
Лекция по теме «Фрактальная графика»
«Фракталы в нашей жизни»
При слове «геометрия» у нас из глубин памяти всплывают цилиндры, треугольники, гипотенузы, биссектрисы углов, «найдите площадь фигуры», грифельные доски и ломающийся мел. Проблема в том, что все, приходящее
на ум, — это язык для описания крайне узкого набора явлений окружающего мира. Дома, может быть, иногда и близки к параллелепипеду, но деревья —
не цилиндры, горы — не конусы, а форму облака непонятно с чем и сравнить.
Если мы приглядимся внимательно, то в окружающем нас мире школьная геометрия описывает не столь уж и многое. И в большинстве своем описывает формы, созданные человеком. Но как быть со всем остальным миром, как можно описать форму дерева или очертания острова, форму комка земли или ветвящуюся структуру бронхов?
Этим вопросом ученые задавались давно, но, поскольку не находили убедительного ответа, записывали эти формы в «неупорядоченные», «неисследуемые».
Глобальный перелом произошел только в 1960–1970-х годах, когда французский математик Бенуа Мандельброт придумал и развил свою теорию фракталов. Это была новая, фрактальная геометрия, взявшая за объект исследования все то неровное, изломанное и шершавое, что нас окружает. И Мандельброт нашел в сложных формах природы свой удивительный порядок.
Все, что существует в реальном мире, является фракталом – это и есть наша гипотеза, а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.
Первые идеи фрактальной геометрии возникли в 19 веке.
Георг Кантор (Cantor, 1845-1918) — немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора
Джузеппе Пеано (Giuseppe Peano; 1858-1932) — итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость.
Позднее аналогичное построение было осуществлено в трехмерном пространстве.
Термин «фрактал», предложенный Б. Мандельбротом в середине 1970-х гг. для обозначения нерегулярных геометрических форм, обладающих самоподобием во всех масштабах, образован, как объясняет сам ученый, от латинского причастия «fractus» и в соответствии с семантикой исходного глагола «frangere» имеет значение «фрагментированный», «изломанный» и «неправильный по форме»
Фракталы делятся на группы. Самые большие группы это:
— геометрические фракталы;
— алгебраические фракталы;
— стохастические фракталы.
Геометрические фракталы
Фракталы этого типа строятся поэтапно. Сначала изображается основа. Затем некоторые части основы заменяются на фрагмент. На каждом следующем этапе части уже построенной фигуры, аналогичные замененным частям основы, вновь заменяются на фрагмент, взятый в подходящем масштабе. Всякий раз масштаб уменьшается. Когда изменения становятся визуально незаметными, считают, что построенная фигура хорошо приближает фрактал и дает представление о его форме. Для получения самого фрактала нужно бесконечное число этапов. Меняя основу и фрагмент, можно получить много разных геометрических фракталов. Примерами геометрических фракталов служат:
Снежинка Коха
Т-квадрат
H-фрактал
Треугольник Серпинского
Дерево Пифагора
Кривая Леви
Дракон
Алгебраические фракталы
Это самая крупная группа фракталов. Они оправдывают своё название, так как строятся на основе алгебраических формул, иногда довольно простых. К ним можно отнести фрактал Мандельброта, фрактал Ньютона, множество Жюлиа и многие другие.
Стохастические фракталы образуются путем многократных повторений случайных изменений каких-либо параметров. В результате итерационного процесса получаются объекты очень похожие на природные фракталы — несимметричные деревья, изрезанные лагунами береговые линии островов и многое другое. Двумерные стохастические фракталы используются преимущественно при моделировании рельефа местности и поверхности моря.
Фракталы в литературе.
Среди литературных произведений находят такие, которые обладают фрактальной природой, т.е. вложенной структурой самоподобия:
«Вот дом.
Который построил Джек.
А вот пшеница.
Которая в тёмном чулане храница
В доме,
Который построил Джек
А вот весёлая птица-синица,
Которая ловко ворует пшеницу,
Которая в тёмном чулане храница
В доме,
Который построил Джек…».
Фракталы в медицине.
Сам по себе человеческий организм состоит из множества фракталоподобных структур: кровеносная система, мышцы, бронхи и т.д.
Примеры фракталоподобных структур в организме человека: бронхи, сосуды, мышцы. Поэтому учёные задумались можно ли применять фрактальные алгоритмы для диагностики или лечения каких-либо заболеваний? Оказывается возможно. Например теория фракталов может применятся для анализа электрокардиограмм. В последние годы в развитых странах, несмотря на очевидные успехи в разработке новых лабораторных и инструментальных методов диагностики и лечения сердечно-сосудистых заболеваний, продолжается их рост.Фракталы в естественных науках.
Очень часто фракталы применяются в геологии и геофизике. Не секрет что побережья островов и континентов имеют некоторую фрактальную размерность, зная которую можно очень точно вычислить длины побережий. Здесь уместно вспомнить одно из самых ранних открытий ученого Мандельброта о бесконечных островах. Оказывается, если наша линейка длиной в 100 м — вокруг острова поместятся 19 штук, и длина его береговой линии будет 1900 м. Если наша линейка длиной в 10 м, она сможет промерить более мелкие впадины и бухты — на береговой линии поместятся 242 штуки, а длина береговой линии составит 2420 м. Если мы возьмем линейку в 1 мм, то сможем промерить каждый камушек — длина береговой линии при таком измерении будет 5423 м — втрое больше первой величины.
Фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты.
Фракталы в природе.
В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру.
Фракталы в квиллинге.
Увидев ажурные поделки в технике квиллинг, возникает ощущение, что что-то они мне напоминают. Повторение одних и тех же элементов в разных размерах – конечно же, это принцип фрактальности.
Фракталы в дизайне мебели.
Прагматичное использование принципа фрактальности продемонстрировал японский дизайнер Такеши Миякава. Тумбочка Fractal 23 содержит 23 ящика самых разных размеров и пропорций, которые как-то ухитряются уживаться между собой внутри кубического корпуса, заполняя почти всё доступное им пространство.
Фракталы в цифровой технике.
Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.
Фрактальная живопись.
Фрактальная живопись – одно из направлений современного арта, популярное среди цифровых художников.
Изобретено новое средство отделки, о котором мало кто знает – фрактальные постеры. Постеры-фракталы – это картины, которые можно рассматривать бесконечно. Они не только украшают интерьер, но и воздействуют на ваше настроение. Вам достаточно лишь выбрать расцветку фрактала, и он будет бодрить или, наоборот, успокаивать, завораживать, давая отдохнуть от напряженного дня, или побуждать к действиям.
Зачастую гениальные открытия, совершенные в науке, способны кардинально изменять нашу жизнь. Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера (в масштабе истории) человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал.
Фрактальная геометрия, открытая Бенуа Мандельбротом, добавляет в наш мир еще одно измерение — типизируемых, описываемых, сложных ломаных форм, которые до этого были не названы и сливались с окружающей действительностью. Теперь же, названные и описанные, они отделились от общей массы, чтобы мы могли разглядеть их во всей красе. Чудеса там, куда ты пристально вгляделся.
Спасибо Мандельброту, открывшему для нас новый, прекрасный и подвижный мир фракталов, по которому мы делаем только первые шаги. Действительно, nomen est numen, назвать — значит узнать.
Фрактальная графика. :: Электроника для всех
25.07.2013 15:45Понятие фрактала и история появления фрактальной графики
Вы, наверное, часто видели довольно хитроумные картины, на которых непонятно что изображено, но все равно необычность их форм завораживает и приковывает внимание. Как правило, это хитроумные формы не поддающиеся, казалось бы, какому–либо математическому описанию. Вы, к примеру, видели узоры на стекле после мороза или, к примеру, хитроумные кляксы, оставленные на листе чернильной ручкой, так вот что–то подобное вполне можно записать в виде некоторого алгоритма, а, следовательно, доступно объясниться с компьютером. Подобные множества называют фрактальными. Фракталы не похожи на привычные нам фигуры, известные из геометрии, и строятся они по определенным алгоритмам, а эти алгоритмы с помощью компьютера можно изобразить на экране. Вообще, если все слегка упростить, то фракталы – это некое преобразование многократно примененное к исходной фигуре.
Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Пеано нарисовал особый вид линии (см. рис. 1). Для ее рисования Пеано использовал следующий алгоритм.
Рис. 1. Алгоритм Пеано
На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии (Часть 1 и 2 Рисунка 1). Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек, а кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных (Броуновское движение, цены на акции).
Вплоть до 20 века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт – отец современной фрактальной геометрии и слова фрактал. Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставив факты, он пришел к открытию нового направления в математике – фрактальной геометрии.
Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый (поделенный на части). И одно из определений фрактала – это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно).
Как только Мандельброт открыл понятие фрактала, оказалось, что мы буквально окружены ими. Фрактальны слитки металла и горные породы, фрактальны расположение ветвей, узоры листьев, капиллярная система растений; кровеносная, нервная, лимфатическая системы в организмах животных, фрактальны речные бассейны, поверхность облаков, линии морских побережий, горный рельеф…
Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта «Фрактальная геометрия природы» ставший классическим – «Какова длина берега Британии?». Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки мы получим какую–то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра – мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно – длина берега Британии бесконечна.
Основное свойство фракталов – самоподобие. Любой микроскопический фрагмент фрактала в том или ином отношении воспроизводит его глобальную структуру. В простейшем случае часть фрактала представляет собой просто уменьшенный целый фрактал.
Отсюда основной рецепт построения фракталов: возьми простой мотив и повторяй его, постоянно уменьшая размеры. В конце концов выйдет структура, воспроизводящая этот мотив во всех масштабах.
Рис.2. Триадная кривая Хельги фон Кох
Берем отрезок и среднюю его треть переламываем под углом 60 градусов. Затем повторяем эту операцию с каждой из частей получившейся ломаной – и так до бесконечности. В результате мы получим простейший фрактал – триадную кривую, которую в 1904 году открыла математик Хельга фон Кох.
Если на каждом шаге не только уменьшать основной мотив, но также смещать и поворачивать его, можно получить более интересные и реалистически выглядящие образования, например, лист папоротника или даже целые их заросли. А можно построить весьма правдоподобный фрактальный рельеф местности и покрыть её очень симпатичным лесом. В 3D Studio Max, например, для генерации деревьев используется фрактальный алгоритм. И это не исключение – большинство текстур местности в современных компьютерных играх представляют фракталы. Горы, лес и облака на картинке – фракталы.
Файлы фрактальных изображений имеют расширение fif. Обычно файлы в формате fif получаются несколько меньше файлов в формате jpg, но бывает и наоборот. Самое интересное начинается, если рассматривать картинки со все большим увеличением. Файлы в формате jpg почти сразу демонстрируют свою дискретную природу – появляется пресловутая лесенка. А вот fif файлы, как и положено фракталам, с ростом увеличения показывают все новую степень детализации структуры, сохраняя эстетику изображения.
Понятие размерности и ее расчет
В своей повседневной жизни мы постоянно встречаемся с размерностями. Мы прикидываем длину дороги, узнаем площадь квартиры и т.д. Это понятие вполне интуитивно ясно и, казалось бы, не требует разъяснения. Линия имеет размерность 1. Это означает, что, выбрав точку отсчета, мы можем любую точку на этой линии определить с помощью 1 числа – положительного или отрицательного. Причем это касается всех линий – окружность, квадрат, парабола и т.д.
Размерность 2 означает, что любую точку мы можем однозначно определить двумя числами. Не надо думать, что двумерный – значит плоский. Поверхность сферы тоже двумерна (ее можно определить с помощью двух значений – углов наподобие ширины и долготы).
Если смотреть с математической точки зрения, то размерность определяется следующим образом: для одномерных объектов – увеличение в два раза их линейного размера приводит к увеличению размеров (в данном случае длинны) в два раза (2^1).
Для двумерных объектов увеличение в два раза линейных размеров приводит к увеличению размера (например, площадь прямоугольника) в четыре раза (2^2).
Для 3–х мерных объектов увеличение линейных размеров в два раза приводи к увеличению объема в восемь раз (2^3) и так далее.
Таким образом, размерность D можно рассчитать исходя из зависимости увеличения «размера» объекта S от увеличения линейных размеров L. D=log(S)/log(L). Для линии D=log(2)/log(2)=1. Для плоскости D=log(4)/log(2)=2. Для объема D=log(8)/log(2)=3.
Рассчитаем размерность для кривой Пеано. Исходная линия, состоящая из трех отрезков длинны Х, заменяется на 9 отрезков втрое меньшей длинны. Таким образом, при увеличении минимального отрезка в 3 раза длина всей линии увеличивается в 9 раз и D=log(9)/log(3)=2 – двумерный объект.
Когда размерность фигуры получаемой из каких–то простейших объектов (отрезков) больше размерности этих объектов – мы имеем дело с фракталом.
Геометрические фракталы
Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется «затравка» – аксиома – набор отрезков, на основании которых будет строиться фрактал. Далее к этой «затравке» применяют набор правил, который преобразует ее в какую–либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем бесконечное количество преобразований – получим геометрический фрактал.
Рассмотренная ранее кривая Пеано является геометрическим фракталом. На рис. 3 приведены другие примеры геометрических фракталов (сверху вниз Снежинка Коха, Лист, Треугольник Серпинского).
Рис.3. Снежинка Коха, Лист, треугольник Серпинского.
Из этих геометрических фракталов очень интересным и довольно знаменитым является – снежинка Коха. Строится она на основе равностороннего треугольника. Каждая линия которого заменяется на 4 линии каждая длинной в 1/3 исходной. Таким образом, с каждой итерацией длинна кривой увеличивается на треть. И если мы сделаем бесконечное число итераций – получим фрактал – снежинку Коха бесконечной длинны. Получается, что наша бесконечная кривая покрывает ограниченную площадь.
Размерность снежинки Коха (при увеличении снежинки в 3 раза ее длина возрастает в 4 раза) D=log(4)/log(3)=1.2619…
Для построения геометрических фракталов хорошо приспособлены так называемые L–Systems. Суть этих систем состоит в том, что имеется определенных набор символов системы, каждый из которых обозначает определенное действие и набор правил преобразования символов.
Алгебраические фракталы
Вторая большая группа фракталов – алгебраические. Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Методов получения алгебраических фракталов несколько. Один из методов представляет собой многократный (итерационный) расчет функции Zn+1=f(Zn), где Z – комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится – на экран выводится точка. При этом значения функции для разных точек комплексной плоскости может иметь разное поведение:
- с течением времени стремится к бесконечности.
- стремится к 0
- принимает несколько фиксированных значений и не выходит за их пределы.
- поведение хаотично, без каких либо тенденций.
Чтобы проиллюстрировать алгебраические фракталы обратимся к классике – множеству Мандельброта (рис. 4).
Рис.4. Множество Мандельброта.
Для его построения нам необходимы комплексные числа. Комплексное число – это число, состоящее из двух частей – действительной и мнимой, и обозначается оно a+bi. Действительная часть a это обычное число в нашем представлении, а bi – мнимая часть. i – называют мнимой единицей, потому, что если мы возведем i в квадрат, то получим –1.
Комплексные числа можно складывать, вычитать, умножать, делить, возводить в степень и извлекать корень, нельзя только их сравнивать. Комплексное число можно изобразить как точку на плоскости, у которой координата Х это действительная часть a, а Y это коэффициент при мнимой части b.
Функционально множество Мандельброта определяется как Zn+1=Zn*Zn+C. Для построения множества Мандельброта воспользуемся алгоритмом на Бейсике.
For a=–2 to 2 ‘ для всех действительных а от –2 до 2
For b=–2 to 2 ‘ для всех мнимых b от –2 до 2
С=a+bi
Z0=0+0i
‘Принадлежит множеству Мандельброта
Lake=True
‘Повторяем 255 раз (для режима 256 цветов)
For iteration=1 to 255
Zn=Z0*Z0+C
‘Проверили – не принадлежит
If abs(Zn)>2 then Lake=False: Exit For
Z0=Zn
Next
‘Нарисовали черную точку,принадлежащую «озеру» Мандельброта.
If Lake=True Then PutPixel(a,b,BLACK)
‘ Нарисовали точку не принадлежащую множеству или лежащую на границе.
Else PutPixel(a, b, iteration)
Next
Next
А теперь поясним программку словами. Для всех точек на комплексной плоскости в интервале от –2+2i до 2+2i выполняем некоторое достаточно большое количество раз Zn=Z0*Z0+C, каждый раз проверяя абсолютное значение Zn. Если это значение больше 2, что рисуем точку с цветом равным номеру итерации на котором абсолютное значение превысило 2, иначе рисуем точку черного цвета. Все множество Мандельброта в полной красе у нас перед глазами.
Черный цвет в середине показывает, что в этих точках функция стремится к нулю – это и есть множество Мандельброта. За пределами этого множества функция стремится к бесконечности. А самое интересное это границы множества. Они то и являются фрактальными. На границах этого множества функция ведет себя непредсказуемо – хаотично.
Меняя функцию, условия выхода из цикла можно получать другие фракталы. Например, взяв вместо выражения С=a+bi выражение Z0=a+bi, а С присваивать произвольные значения мы получим множество Жюлиа, тоже красивый фрактал.
Для множества Мандельброта тоже проявляется самоподобие.
Стохастические фракталы
Типичный представитель данного класса фракталов «Плазма» (Рис.5).
Рис. 5. Плазма.
Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число – тем более «рваным» будет рисунок. Если, например, сказать, что цвет точки это высота над уровнем моря, то получим вместо плазмы – горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот (Рис.6), к ней применяются различные фильтры, накладываем текстуру.
Рис.6. Карта высот.
Системы итерируемых функций (IFS – Iterated Function Systems)
Эта группа фракталов получила широкое распространение благодаря работам Майкла Барнсли из технологического института штата Джорджия. Он пытался кодировать изображения с помощью фракталов. Запатентовав несколько идей по кодированию изображений с помощью фракталов, он основал фирму «Iterated Systems», которая через некоторое время выпустила первый продукт «Images Incorporated», в котором можно было изображения переводить из растровой формы во фрактальную FIF.
Это позволяло добиться высоких степеней сжатия. При низких степенях сжатия качество рисунков уступало качеству формата JPEG, но при высоких картинки получались более качественными. В любом случае этот формат не прижился, но работы по его усовершенствованию ведутся до сих пор. Ведь этот формат не зависит от разрешения изображения. Так как изображение закодировано с помощью формул, то его можно увеличить до любых размеров и при этом будут появляться новые детали, а не просто увеличится размер пикселей.
Если в L–systems (алгебраических фракталах) речь шла о замене прямой линии неким полигоном, то в IFS мы в ходе каждой итерации заменяем некий полигон (квадрат, треугольник, круг) на набор полигонов, каждый их которых подвергнут аффинным преобразованиям. При аффинных преобразованиях исходное изображение меняет масштаб, параллельно переносится вдоль каждой из осей и вращается на некоторый угол.
Фракталы и хаос
Понятие фрактал неразрывно связано с понятием хаос. Хаос – это отсутствие предсказуемости. Хаос возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по–разному. Пример хаотичной динамической системы – погода (метеорологи шутят: «Взмах крыла бабочки в Техасе приводит к урагану во Флориде»).
Хорошо проиллюстрировать хаотичное поведение можно с помощью так называемого logistic equation (логистического уравнения) x=c*x(1–x). Пришло это выражение из биологии, т.к. это грубая модель популяции животных. Так вот при исследовании поведения этой функции выяснилась интересная ее особенность. Если с – фактор роста популяции находится в пределах от 1 до 3, то через некоторое количество итераций популяция стабилизируется.
Рис. 7. Зависимость поведения функции от величины с.
При с=3 наша функция раздваивается – через определенное число итераций приходим к ситуации, когда высокая популяция в один год сменяется низкой в следующий и значение выражения как бы скачет между двумя значениями.
При с=3.45 она раздваивается снова и у нас уже имеется четырехлетний цикл.
Далее при росте с функция раздваивается все быстрее и быстрее: при с=3.54, с=3.564, с=3.569 …
И в точке 3.57 начинается хаос. Значения выражения не имеют какой либо периодичности или структуры. На рисунке 7 изображена зависимость поведения функции от величины с.
Фракталы | Журнал Популярная Механика
Фракталы известны уже век, хорошо изучены и имеют многочисленные приложения в жизни. Однако в основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций — копирования и масштабирования.
Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д., то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).
Что такое фрактал? У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: • Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). • Является (приближенно) самоподобной. • Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. • Может быть построена рекурсивными процедурами.
Геометрия и алгебра
Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».
Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.
Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.
Фрактальные размерности
Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!
Наука и искусство
В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.
Схема получения кривой Коха
Война и мир
Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы».
Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.
Фрактальная графика Википедия
Фрактальная форма кочана капусты сорта Романеско (Brassica oleracea)Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами.
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.
Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств:
- Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких как окружность, эллипс, график гладкой функции): если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.
- Является самоподобным или приближённо самоподобным.
- Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы.
Что такое фрактал? Фракталы в природе
Зачастую гениальные открытия, совершенные в науке, способны кардинально изменять нашу жизнь. Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера (в масштабе истории) человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал. Большинство людей даже не слышали о таком понятии и не смогут объяснить его значение. В этой статье мы попробуем разобраться с вопросом о том, что такое фрактал, рассмотрим значение этого термина с позиции науки и природы.
Порядок в хаосе
Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в точные науки, мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно. И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично. Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук.
Немного сухих фактов
Само слово «фрактал» с латыни переводится как «частичный», «разделенный», «раздробленный», а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом фрактальной геометрии. Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины.
Историческая справка, или Как все начиналось
На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора – «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид – С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы.
Динамические, или алгебраические фракталы
К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений (вручную такой объем невозможно провести), позволивших построить изображение этих фигур.
Человек с пространственным воображением
Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени.
Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, что такой человек, отличающийся богатым пространственным мышлением, и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе.Жюлиа – Мандельброт
Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность. Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру (каждый цвет соответствует определенному числу итераций). Данное графическое изображение получило имя «фрактал Мандельброта».
Л. Карпентер: искусство, созданное природой
Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе (фыва), он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал — это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил.
Решение Карпентера
Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те — на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.
Первая 3D-визуализация на фрактальном алгоритме
Уже через несколько лет Лорен применил свои наработки в масштабном проекте – анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты (целую планету) для полнометражного фильма «Star Trek». Любая современная программа («Фракталы») или приложение для создания трехмерной графики (Terragen, Vue, Bryce) использует все тот же алгоритм для моделирования текстур и поверхностей.
Том Беддард
В прошлом лазерный физик, а ныне цифровых дел мастер и художник , Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.
Фракталы в природе
Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина – они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы.
Музыкальная пауза
Оказывается, фракталы — это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, что такая мелодия соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.
Индикатор-фрактал
Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.
В заключение
Вот мы и рассмотрели, что такое фрактал. Оказывается, в хаосе, который окружает нас, на самом деле существуют идеальные формы. Природа является лучшим архитектором, идеальным строителем и инженером. Она устроена весьма логично, и если мы не можем найти закономерность, это не значит, что ее нет. Может быть, нужно искать в ином масштабе. С уверенностью можно сказать, что фракталы хранят еще немало секретов, которые нам только предстоит открыть.
Фрактал — это… Что такое Фрактал?
Фрактальная форма кочана капусты сорта Романеско (Brassica oleracea)Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической.
Термин
Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств:
- Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.
- Является самоподобной или приближённо самоподобной.
- Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.
Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.
История
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например,функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Примеры
Самоподобные множества с необычными свойствами в математике
Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:
Рекурсивная процедура получения фрактальных кривых
Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены четыре первых шага этой процедуры для кривой Коха.
Примерами таких кривых служат:
С помощью похожей процедуры получается дерево Пифагора.
Фракталы как неподвижные точки сжимающих отображений
Свойство самоподобия можно математически строго выразить следующим образом. Пусть — сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:
Можно показать, что отображение является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.
Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения — отображения подобия, а — число звеньев генератора.
Для треугольника Серпинского и отображения , , — гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении .
В случае, когда отображения — преобразования подобия с коэффициентами , размерность фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем .
По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.
Фракталы в комплексной динамике
Ещё одно множество ЖюлиаФракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу 20 века и связаны с именами Фату и Жюлиа.
Пусть F(z) — многочлен, z0 — комплексное число. Рассмотрим следующую последовательность: z0, z1=F(z0), z2=F(z1), z3=F(z2), …
Нас интересует поведение этой последовательности при стремлении n к бесконечности. Эта последовательность может:
- стремиться к бесконечности,
- стремиться к конечному пределу,
- демонстрировать в пределе циклическое поведение, например: z1, z2, z3, z1, z2, z3, …
- вести себя хаотично, то есть не демонстрировать ни один из трёх упомянутых типов поведения.
Множества значений z0, для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.
Так, множество Жюлиа — множество точек бифуркации для многочлена F(z)=z2+c (или другой похожей функции), то есть тех значений z0, для которых поведение последовательности {zn} может резко меняться при сколь угодно малых изменениях z0.
Другой вариант получения фрактальных множеств — введение параметра в многочлен F(z) и рассмотрение множества тех значений параметра, при которых последовательность {zn} демонстрирует определённое поведение при фиксированном z0. Так, множество Мандельброта — это множество всех , при которых {zn} для F(z)=z2+c и z0 не стремится к бесконечности.
Ещё один известный пример такого рода — бассейны Ньютона.
Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления {zn} к бесконечности (определяемой, скажем, как наименьший номер n, при котором |zn| превысит фиксированную большую величину A.
Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.
Стохастические фракталы
Рандомизированный фрактал на основе множества Жюлиа
Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:
- траектория броуновского движения на плоскости и в пространстве;
- граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
- эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например, в модели Изинга и перколяции.
- различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.
В природе
Вид спереди на трахею и бронхи- Бронхиальное дерево
- Сеть кровеносных сосудов
- Деревья
- Молния
Применение
Естественные науки
В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).
Радиотехника
Фрактальные антенны
Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.
Информатика
Сжатие изображений
Фрактальное деревоСуществуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован[источник не указан 779 дней] фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.
Компьютерная графика
Ещё одно фрактальное дерево
Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).
Децентрализованные сети
Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.
Экономика и финансы
А. А. Алмазов в своей книге «Фрактальная теория. Как поменять взгляд на рынки» предложил способ использования фракталов при анализе биржевых котировок, в частности — на рынке Форекс.
Галерея
См. также
Литература
- А. А. Кириллов Повесть о двух фракталах. — Летняя школа «Современная математика». — Дубна, 2007.
- Мандельброт Б. Фрактальная геометрия природы. — М.: «Институт компьютерных исследований», 2002.
- Пайтген Х.-О., Рихтер П. Х. Красота фракталов. — М.: «Мир», 1993.
- Федер Е. Фракталы. — М: «Мир», 1991.
- Фоменко А. Т. Наглядная геометрия и топология. — М.: изд-во МГУ, 1993.
- Цицин Ф.А. Фрактальная вселенная // «Дельфис» — №11(3) — 1997.
- Фракталы в физике. Труды 6-го международного симпозиума по фракталам в физике, 1985. — М.: «Мир», 1988.
- Маврикиди Ф.И. Фракталы: постигая взаимосвязанный мир // «Дельфис» — №23(3) — 2000.
- Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. — Ижевск: «РХД», 2001.
- Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории.
- Мандельброт Бенуа, Ричард Л. Хадсон (Не)послушные рынки: фрактальная революция в финансах = The Misbehavior of Markets. — М.: «Вильямс», 2006. — С. 400. — ISBN 5-8459-0922-8
- Красивая жизнь комплексных чисел // Hard’n’Soft, № 9, 2002. Стр. 90.
- М. Г. Иванов, «Размер и размерность» // «Потенциал», август 2006.
- Маврикиди Ф.И. Фрактальная математика и природа перемен // «Дельфис» — №54(2) — 2008.
Ссылки
- Надежда Атаева, Фрактальные множества (Санкт-Петербургский государственный университет: ПМ-ПУ)
- Обаяние самоподобия. Лампочка Мандельброта и многое другое в галерее фракталов от Ленты. Ру // Лента. Ру, 27 фото.
- «Фракталы. Поиски новых размерностей» (англ. Fractals. Hunting The Hidden Dimension) — научно-популярный фильм, снятый в 2008 г.
- Фракталы на Элементы.ру
описание, примеры, форматы, достоинства и недостатки
Математика буквально пронизана гармонией, и фрактальная графика тому прямое подтверждение. Наука присутствует в создании каждого из его элементов, поэтому оно отражает всю красоту.
Основоположник фрактальной геометрии профессор Мальдерброт писал в своих книгах, что рассматриваемая графика — это не просто повторяющиеся изображения. Это структура любого существа или объекта на планете, живого и неживого.Например, ДНК — это основа, одна интеграция. Но если код начинает повторяться, значит появляется человек.
Основы фрактальной графики
Что такое фрактальная графика? Это одна или несколько геометрических фигур, каждая из которых похожа на другую. То есть изображение состоит из одинаковых частей.
Само слово «фрактал» можно использовать, если фигура обладает одним или несколькими из следующих свойств:- Нетривиальная структура. Если рассматривать небольшую деталь всего изображения, то фрагмент подобен всему изображению.Увеличение масштаба не приводит к ухудшению качества. Образ всегда остается одинаково сложным.
- Каждая часть изображения подобна себе.
- Есть математическое измерение.
- Построен повторением.
Многие объекты естественного или искусственного происхождения наделены свойствами фракталов. К ним относятся кровеносные системы человека и животных, кроны и корни деревьев и так далее.
Фрактальная компьютерная графика становится популярной, потому что вы можете добиться красоты и реализма простым построением с помощью соответствующего оборудования.Вам просто нужно указать правильную математическую формулу и указать количество повторов.
Как создать элемент фрактальной графики?
Создание фрактальной графики будет отличаться в зависимости от ее классификации: геометрическая, алгебраическая или стохастическая. Несмотря на разницу, результат всегда будет одинаковым. Поскольку фрактальная графика начинается с геометрии, вам следует рассмотреть возможность ее создания в соответствующем примере:
- Задайте условие. Это тот показатель, на основе которого будет построен весь образ.
- Определите процедуру. Он преобразует условие.
- Получите геометрический фрактал.
Обычно нулевое условие представлено в виде треугольника.
Чтобы построить образ, нужно применить две процедуры. Во-первых, DrawTriangle. Он строит треугольник по точкам, указанным пользователем. Во-вторых, DrawGenerator. Указывает количество баллов. Каждую процедуру можно повторять несколько раз или бесконечно долго. Для определения этого показателя используйте числовой аргумент n.Другие действия с фрактальной графикой
После того, как элемент фрактальной графики создан, с ним можно производить различные дополнительные действия:
- Повороты и растягивание.Таким образом, отдельные детали изображения увеличиваются или принимают желаемую пользователем форму.
- Группировка объектов. Обычно эта функция используется для задания необходимого масштаба.
- Преобразование цветов. Образ можно окрасить в любой оттенок, задать тон.
- Изменить форму всего объекта или отдельных частей.
Следует помнить, что фракталографические изображения не могут быть предсказаны в конечном итоге. Когда треугольник слишком большой, вид будет нереальным, пользователь увидит только черное окно.Когда желаемая текстура обнаружена, все изменения с ней должны производиться в минимальном порядке, всегда сохраняя допустимую версию.
Генерация программ
Нет такого человека, которого бы не привлекала фрактальная графика. Программы, задействованные в его создании, представлены в большом количестве. Поэтому нужно разобраться в наиболее подходящих для новичков.
Art Dabbler является подарком, если пользователь ранее не занимался своими налогами. Здесь вы можете не только изучить графику, но и научиться рисовать на компьютере.К другим преимуществам можно отнести небольшой объем памяти и интуитивно понятный интерфейс.Еще одна программа — Ultra Fractal. Он уже ориентирован на работу профессионалов, новичкам будет сложно разобраться. Интерфейс здесь довольно сложный, но производители реализовали его на примере обычного фотошопа. Если пользователь разобрался с этой программой, то кнопки быстро переберутся. Особенность Ultra Fractal в том, что здесь выполняется не только фрактальная графика в виде стандартного и обычного изображения, но и анимация.Формулы для составления прилагаются, но при необходимости пользователь сможет использовать свои.
Существующие форматы
Форматы фрактальной графики определяют форму и способ хранения данных файла. Некоторые из них содержат большой объем информации. Следовательно, они должны быть сжаты. Причем делать это не архивированием, а прямо в файле. Если вы выберете его правильно, сжатие произойдет автоматически. Есть несколько алгоритмов этой процедуры.
Если раньше пользовательское приложение выдержано в основном в одном цвете, то целесообразно использовать форматы BMP и PCX.Здесь заменяется последовательность повторяющихся значений.
Диаграмму, которая встречается очень редко, но до сих пор используется во фрактальной графике, логично разместить в TIFF или GIF.Некоторые форматы универсальны. То есть их можно просмотреть в большинстве редакторов. Но если пользователя интересует качественная обработка изображений, то нужно применить оригинальную программу.
Фрактальные форматы не поддерживаются браузерами. Именно поэтому они трансформируются, если возникает необходимость загрузки на конкретный сайт.
Приложения
Использование фрактальной графики можно назвать практически повсеместным.Причем это направление постоянно расширяется. На данный момент можно отметить следующие направления:
- Компьютерная графика. Реликвии и природные объекты изображены реалистично. Это касается создания компьютерных игр.
- Анализ фондовых рынков. Фракталы здесь используются для обозначения повторов, которые позже будут играть у трейдеров под рукой.
- Естественные науки. В физике нелинейные процессы моделируются с помощью фрактальной графики. В биологии она описывает строение кровеносной системы.
- Сжимайте изображения, чтобы уменьшить объем информации.
- Создайте децентрализованную сеть. С помощью фракталов можно обеспечить прямую связь, а не через центральное регулирование. Таким образом, сеть становится более стабильной.
На данный момент практика использования фракталов в производстве различного оборудования. Например, уже запущен конвейер по созданию антенн, отлично принимающих сигналы.
Примеры
Примеры фрактальной графики — это обычные примитивы для очень сложных повторяющихся элементов.Уникальной особенностью этого типа является то, что рисунок может состоять полностью из восклицательных или вопросительных знаков.
Стандартными, но относительно сложными примерами компьютерной фрактальной графики являются облака, горы, морские берега и так далее. Их часто используют для создания игр.Самый простой пример — кривая Коха. Во-первых, он не имеет определенной длины, и его называют бесконечным. Во-вторых, здесь нет плавности. Следовательно, касательную построить невозможно.
Достоинства и недостатки
Недавно получил свою раздачу фрактальной графики.Достоинства и недостатки у него слишком размыты, так как нет нормальной теоретической базы. Терминология и принципы ее использования до конца не поняты, несмотря на то, что они эффективны и работают.
Преимущества фрактальной графики заключаются в нескольких факторах:
- Малый размер при крупномасштабной фигуре.
- Масштабированию нет конца, сложность картинки можно увеличивать до бесконечности.
- Нет другого такого инструмента, который позволил бы создавать сложные фигуры.
- Реалистично.
- Простота в создании работ.
Недостатки фрактальной графики тоже присутствуют. Во-первых, без компьютера не обойтись. Причем, чем больше количество повторов, тем больше загружается процессор. Соответственно, только качественная компьютерная техника способна справиться с построением сложных изображений.
Во-вторых, исходные математические цифры имеют ограничения. Некоторые изображения невозможно создать с помощью фракталов.Сходства и различия между фракталом и вектором
Векторная и фрактальная графика сильно различаются:
- Кодирование изображения.Вектор использует контуры различных геометрических фигур, фрактал — это математическая формула, основанная на треугольнике.
- По заявке. Вектор используется везде, где нужно получить четкий контур. Фрактальная графика более специализирована, она нашла свое применение в математике и искусстве.
- По аналогии. Аналоги векторов — это слайды или функции на графиках. У фракталов есть снежинки или кристаллы.
Несмотря на разнообразие отличительных особенностей, эти два типа графики сочетают в себе качество изображения.Он остается неизменным независимо от уровня масштабирования.
Трехмерная, векторная, растровая, фрактальная графика —
.Simple English Wikipedia, бесплатная энциклопедия
Фрактал — это любой узор, который при просмотре как изображение создает изображение, которое при увеличении масштаба все равно будет создавать такое же изображение. Его можно разрезать на части, которые выглядят как уменьшенная версия начального рисунка. Слово фрактал было создано Бенуа Мандельбротом в 1975 году от латинского слова Fractus , что означает «сломанный» или «сломанный». Простой пример — дерево, которое разветвляется на более мелкие ветви, а эти ветви — на более мелкие и так далее.Фракталы не только красивы, но и имеют множество практических применений.
Есть много типов фракталов, созданных самыми разными способами. Одним из примеров является треугольник Серпинского, в котором есть бесконечное количество маленьких треугольников внутри большого. Другой пример — множество Мандельброта, названное в честь Бенуа Мандельброта. Треугольник Серпинки построен с использованием шаблонов, но множество Мандельброта основано на уравнении.
Есть также много природных примеров фракталов в природе, включая деревья, снежинки, некоторые овощи и береговые линии.
Кривая Коха [изменить | изменить источник]
Как сделать кривую КохаКривая Коха — простой пример фрактала. Во-первых, начните с части прямой линии, называемой отрезком прямой. Разрежьте леску на 3 части одинакового размера. Избавьтесь от середины этих частей и вставьте верхнюю часть треугольника со сторонами той же длины, что и вырезанная часть. Теперь у нас есть 4 отрезка, которые соприкасаются концами. Теперь мы можем сделать то, что мы только что сделали с первым сегментом для каждого из 4 бит.Теперь мы можем делать одно и то же снова и снова со всеми полученными битами. Теперь мы делаем это вечно и смотрим, что у нас получается.
Длина кривой Коха равна бесконечности, а площадь кривой Коха равна нулю. Это довольно странно. Сегмент линии (с размером 1) может иметь длину 1, но его площадь равна 0. Квадрат длиной 1 и шириной 1 (с размером 2) будет иметь площадь 1 и длину бесконечности.
Размерность подобия [изменить | изменить источник]
Итак, кривая Коха кажется больше, чем что-то из измерения 1, и меньше, чем что-то из измерения 2.Идея измерения подобия состоит в том, чтобы дать измерение, которое дает лучшее представление о длине или площади фракталов. Итак, для кривой Коха нам нужен размер от 1 до 2.
Кривую Коха можно разрезать на четыре части, каждая из которых на 13 {\ displaystyle {\ frac {1} {3}}} меньше размера оригинала. Мы называем количество частей, на которые фрактал может быть разрезан, N {\ displaystyle N}, а разницу в размерах называем B {\ displaystyle B}. Мы помещаем их в уравнение:
журналN − logB {\ displaystyle {\ frac {\ log N} {- \ log B}}}
Где журнал {\ displaystyle \ log} — логарифм числа.Это число является хаусдорфовой размерностью фрактала. На кривой Коха это log4 − log13 = 1,2619 … {\ displaystyle {\ frac {\ log 4} {- \ log {\ frac {1} {3}}}} = 1,2619 .. .} как мы и хотели.
Кривая Коха — одна из самых простых фрактальных форм, поэтому ее размерность легко вычислить. Его размерность подобия и размерность Хаусдорфа одинаковы. Это неверно для более сложных фракталов.
Снежинка Коха [изменить | изменить источник]
Снежинка Коха (или звезда Коха) такая же, как кривая Коха, за исключением того, что она начинается с равностороннего треугольника вместо отрезка линии.
Фракталы имеют множество применений, например в биологии (легкие, почки, вариабельность сердечного ритма и т. д.), землетрясениях, финансах, где это связано с так называемым распределением тяжелых хвостов, и в физике. Это указывает на то, что фракталы необходимо изучить, чтобы понять, почему фракталы так часто встречаются в природе.
Некоторые фракталы существуют только из художественных соображений, но другие очень полезны. Фракталы представляют собой очень эффективные формы для радиоантенн и используются в компьютерных микросхемах для эффективного соединения всех компонентов.Кроме того, береговые линии можно рассматривать как фракталы. [1]
.